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Sphingolipids (SLs) were discovered by 
Thudichum in 1884 and are considered normal 
components of the plasma membrane, myelin 
sheath, and plasma.1,2 SLs are degraded into 
bioactive intermediates that can join in signal 
transduction pathways that play a role in 
the regulation of cell survival, migration, 
programmed cell death, and intracellular 
functions.3 In the degradation and recycling of 
SLs, a highly preserved group of enzymes are 

involved. Sphingolipidoses, a storage disorder, 
is caused by the accumulation of different 
classes of SLs due to the deficiency of these 
enzymes.4 

Ceramide and sphingosine 1 phosphate 
(S1P) are two important bioactive SLs.5 S1P 
can be degraded into two non-SL products, 
hexadecanal and ethanolamine phosphate, by 
sphingosine 1 phosphate lyase (SGPL1).6 The 
only known exit pathway of SL metabolism is 
the production of these two compounds. SGPL1, 
the last enzyme in the sphingolipid degradation 
pathway, catalyzes the irreversible division of 
long-chain base phosphates.7

Novel sphingosine-1-phosphate lyase mutation causes 
multisystemic diseases: case report

Gönül Büyükyılmaz1 , Keziban Toksoy Adıgüzel1 , Özlem Yüksel Aksoy2 , 
Çiğdem Seher Kasapkara3 , Gizem Ürel Demir4 , Engin Demir5 ,  
Şule Berk Ergun6 , Fatih Gürbüz1 , Mehmet Boyraz1

1Department of Pediatric Endocrinology, Ankara Bilkent City Hospital, Ankara; 2Department of Pediatric Nefrology, Ankara Bilkent 
City Hospital, Ankara; 3Department of Pediatric Metabolism and Nutrition, Ankara Bilkent City Hospital, Ankara; 4Department 
of Pediatric Genetics, Mersin City Hospital, Mersin; 5Department of Pediatric Gastroenterology, Mersin City Hospital, Mersin; 
6Department of Ophthalmology, Ankara Bilkent City Hospital, Ankara, Türkiye.

ABSTRACT

Background. Sphingosine phosphate lyase insufficiency syndrome (SPLIS) caused by inactivating mutations 
in the human SGPL1 gene results in congenital nephrotic syndrome, adrenal insufficiency, ichthyosis, 
immunodeficiency, and a wide range of pathological neurological features. We present a novel mutation in 
the SGPL1 gene causing hypocalcemia, primary adrenal insufficiency (PAI), nephrotic syndrome, subclinical 
hypothyroidism, lymphopenia, ptosis, and pathologic neuroimaging findings.

Case. A Turkish male infant presented with bruising at 2 months of age and was diagnosed with hypocalcemia, 
PAI, and subclinical hypothyroidism. At the age of 15 months, he was admitted to the hospital with ptosis. 
Other systemic manifestations included persistent lymphopenia and nephrotic syndrome. Magnetic resonance 
imaging (MRI) of the brain and orbit demonstrated asymmetric contrast enhancement in the left cavernosal 
sinus, orbital apex, and thinning at the bilateral optic nerve. Whole exome sequencing (WES) revealed a 
homozygous c.1432C>G (p.Gln478Glu) variant in the SGPL1 gene (NM_003901.4), which has not previously 
been reported in the literature.

Conclusions. Novel mutations in SGPL1 are still being identified. This case reminded us that SPLIS should not 
be considered for patients with nephrotic syndrome alone. Still, PAI may also include patients with neurological 
disorders, hypocalcemia, and pathological neuroimaging findings such as thinning at the bilateral optic nerve.
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 In reports between 2017 and 2018, a new 
childhood syndrome called sphingosine 
phosphate lyase insufficiency syndrome (SPLIS) 
was defined. SPLIS is caused by inactivating 
mutations in the human SGPL1 gene that 
encodes SGPL1.8-10 SPLIS includes a combination 
of ichthyosis/acanthosis, steroid-resistant 
nephrotic syndrome, hypothyroidism, primary 
adrenal insufficiency (PAI), gonadal dysgenesis, 
lymphopenia and/or neurological disorders 
including microcephaly, cranial nerve defects, 
and peripheral neuropathy. The pathogenesis 
of findings other than lymphopenia has yet to 
be fully elucidated. In the literature, it has been 
reported that clinical findings may be caused by 
excess intracellular S1P, accumulation of other 
SLs, abnormal S1P receptor signaling, or loss of 
SGPL1 products.11 Accumulation of the species 
S1P, sphingosine, and ceramide, have been 
associated with the induction of cytotoxicity 
and apoptosis.12,13 S1P functions as a ligand 
for a family of 5 specific G-protein coupled 
receptors (S1PR1-5).14 S1PR1, the prototype of 
S1PR, regulates the outflow of T lymphocytes 
from the thymus and peripheral lymphoid 
organs.15 While S1P levels are extremely low in 
most tissues other than blood and lymph, they 
are kept at low concentration levels in tissues 
by SGPL1.10 When SGPL1 activity is disrupted, 
this gradient cannot occur, and increased S1P 
level reduces the S1P chemotactic gradient or 
the ability of the lymphocyte to detect it, which 
leads to lymphopenia.16 

Herein, we present a novel mutation in SGPL1 
causing multi-systemic disease.

Case Report

A male Turkish patient was the fourth child of 
first-degree consanguineous healthy parents 
without a family history of chronic diseases. 
After an uneventful pregnancy, he was born at 
39th weeks of gestation, with a birth weight of 
2800 g. His elder siblings were healthy. He was 
referred to an external center with a complaint 
of bruising at two months of age. Biochemical 
tests revealed calcium: 5.3 mg/dL (9–11), 

phosphorus: 7.3 mg/dL (3.7–6.5), magnesium: 
1.7 mg/dL (1.3-2.7), alkaline phosphatase: 658 
IU/mL (122–469), parathyroid hormone: 157 
pg/mL (15–65), and 25OH vitamin D: 6.72 
ng/mL (20-30) levels. Complete blood count, 
electrolyte, glucose, liver, and kidney tests were 
normal. Treatment with calcium and vitamin 
D was started. High doses of intravenous 
and oral calcium were required to treat his 
hypocalcemia. Thyroid hormone replacement 
was started due to the results of the thyroid 
stimulating hormone (TSH): 10.2 IU/mL (0.27–
4.2) and fT4: 14.25 pmol/L (12-22). No problems 
were detected on the thyroid ultrasound. 
When cholestasis developed during his 
hospitalization, an evaluation was conducted 
and resulted in an adrenocorticotropic hormone 
(ACTH) level of 722 pg/mL and cortisol level of 
2.2 ug/dL; thus, he was diagnosed with PAI, 
and hydrocortisone treatment was started. 
Cholestasis was improved after hydrocortisone 
treatment. 

At the age of 15 months, he was admitted to 
our hospital with a preliminary diagnosis of 
periorbital cellulitis and complaints of ptosis 
and eyelid swelling. Body weight was measured 
as 8 kg (–2.73 standard deviation score 
[SDS]), height as 72 cm (–2.79 SDS), and head 
circumference as 44 cm (–2.76 SDS). The cranial 
nerve and ophthalmological examination 
revealed nearly complete ophthalmoplegia 
of the left eye, without direct light reflex. 
Ophthalmological examination of the right eye 
was normal, and there was no other motor or 
sensory neurological deficit. The patient was 
transferred to the ophthalmology department 
for further assessment and management. Upon 
ophthalmological and neurological examination 
there was severe ptosis on the left, and when 
the right eye was fixed, the left eye was in an 
abducted position, indicating oculomotor and 
trochlear nerve palsies on the left side (Fig. 
1). This exotropia was at a large angle in the 
primary gaze position. When the right eye 
was manually closed, the patient was unable 
to bring his exotropic left eye to the midline. 
Direct pupillary light reflex was not obtained 
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from the left eye but it was normal for the right 
eye. Biomicroscopic and fundus examinations 
were normal for both eyes. Other system 
examinations including the genitourinary 
system were normal. The laboratory results of 
the patient are given in Table Ⅰ. 

The echocardiography was normal. He had 
nephrotic range proteinuria (2.5 g/day, 200 
mg/m²/h) and hypoalbuminemia (26 g/L). He 
was administered captopril first. A hearing 
test was normal. Malignancy was excluded. 

Investigations for infectious diseases were 
normal. No thrombus was detected on orbital 
venography. Abdominal computed tomography 
imaging was normal. No adrenal calcification 
was detected. Immunological evaluation was 
performed due to the detection of lymphopenia 
(650–1500/mm³), and the number of B cells 
and CD4+ T cells were found to be low. 
Trimethoprim-sulfamethoxazole, fluconazole 
and monthly IVIG treatments were started 
prophylactically. Metabolic investigations 
including very long chain fatty acids, acyl 
carnitines, urinary organic acids, urine and 
plasma amino acids, lactic and pyruvic acids 
were all normal.

T1 weighted (T1W) magnetic resonance imaging 
(MRI) of the brain and orbit demonstrated 
asymmetric contrast enhancement in the left 
cavernosal sinus and orbital apex (Fig. 2-3). 
MRI also showed thinning at the bilateral optic 
nerve (Fig. 2, 4). His imaging findings were 
discussed with neuroradiology and assumed 
to likely represent an underlying inflammatory 
process. Methylprednisolone treatment was 
started. After 10 weeks of steroid treatment, no 

Table I. The results of the initial laboratory investigations (at 15 months)
Parameter Value Unit Reference range Parameter Value Unit Reference range
Corrected Ca 7.1 mg/dL 9.1-10.3 Hgb 8.2 g/dL 10.2-13.4
Phosphorus 3.8 mg/dL 4.1-6.5 PLT 198 x109/L 220-490
ALP 192 U/L 142-336 WBC 3.34 x109/L 5.4-13.8
PTH 108 ng/L 18.4-80.1 Lymphocytes 0.76 x109/L 3-10
25OH-D 19 nmol/L 75-375 ALT 8 U/L 0-32
Creatinine 0.1 mg/dL 0.1-0.4 AST 46 U/L 0-46
Urea 9 mg/dL 11-39 Na 138 mEq/L 132-146
ACTH 903 pg/mL <46 K 3.0 mEq/L 3.5-5.5
Cortisol 8.2 μg/dL 5.2-22 Cl 109 mEq/L 99-109
TSH 15.3 mU/L 0.5-4.9 Glucose 86 mg/dL <100
fT4 0.97 ng/dL 0.83-1.43 Albumin 26 g/L 32-48
FSH 1.9 U/L 0.3-10.1 Prot. (urinalysis) ++++ - negative
LH 0.1 U/L <0.6 Prot./cre (urine) 21.4 mg/mg <0.5
Renin 0.47 ng/mL/h 1.7-11.2 24h urine prot. 200 mg/m²/h <4
Aldosterone 12 pg/mL 10-160
25OH-D: 25-hydroxyvitamin D, ACTH: adrenocorticotropic hormone, ALP: alkaline phosphatase, ALT: alanine 
transaminase, AST: aspartate transaminase, cre: creatinine, FSH: follicle-stimulating hormone, fT4: free thyroxine, Hgb: 
hemoglobin, LH: luteinizing hormone, PLT: platelet, Prot.: protein, PTH: parathyroid hormone, TSH: thyroid-stimulating 
hormone, WBC: white blood cell.

Fig. 1. The patient at 15 months of age presenting 
with ptosis.
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asymmetric contrast enhancement in the left 
cavernosal sinus and orbital apex was detected 
on the MRI (Fig. 4). Despite the enhancement 
in MRI findings, there was no improvement in 
ptosis.

With the findings of hypocalcemia, PAI, 
nephrotic syndrome, subclinic hypothyroidism, 
lymphopenia, and ptosis, a homozygous 
mutation was found in the SGPL1 gene, 
confirming SPLIS. 

Whole exome sequencing (WES) was performed 
using the TWIST Comprehensive Exome Kit 

and MGI DNB SEQ G400. WES revealed a 
homozygous c.1432C>G (p.Gln478Glu) variant 
in the SGPL1 gene (NM_003901.4), which was not 
previously reported in the literature. The variant 
was not found in the gnomAD genomes, 1000G 
and ExAC databases. This variant is classified 
as VUS according to the American College 
of Medical Genetics and Genomics (ACMG) 
guidelines and estimated to be deleterious by 
in silico pathogenicity prediction tools such as 
MutationTaster, SIFT, and Polyphen-2 (score 
0.999). The detected variant resides in a highly 
conserved protein region according to the 

Fig. 4. There is no asymmetric contrast enhancement at left orbital apex.

Fig. 2. Axial contrast enhancing T1W MRI shows 
asymetric contrast enhancement at the left orbital 
apex, thinning of the optic nerve.

Fig. 3. Coronal contrast enhancing T1W MRI shows 
asymetric contrast enhancement at the left orbital 
apex.
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GERP++ in-silico prediction (GERP score= 5.78) 
(Fig. 5). Sanger sequencing was carried out for 
validation and segregation analysis showed that 
his parents were heterozygous carriers for the 
same variant. Informed consent was obtained 
from the patient’s family for the publication of 
this case report, including photographs. 

Discussion

We described the phenotypic features and 
molecular diagnosis of SPLIS in a Turkish 
male patient who had a novel homozygous 
variant discovered in the SGPL1 gene using 
WES. In the current case, hypocalcemia, PAI, 
and subclinic hypothyroidism were found in 
the first year of life. Lymphopenia, ptosis, and 
nephrotic syndrome were detected between 
one and two years of age. Also, an MRI showed 
thinning of the bilateral optic nerves. To date, 
less than 70 confirmed cases of SPLIS have been 
reported, and 13 patients stated in the literature 
were of Turkish origin. All cases reported from 

Turkey had homozygous variants, and all of the 
patients had consanguineous parents, just like 
our patient. Although the most common initial 
clinical manifestations of reported patients were 
kidney disorders; our patient presented with 
endocrine disorders at the age of two months. 
In our patient, who is currently 2.7 years old, 
there were no new findings other than the 
clinical manifestations we reported above. 

 In a recent review, 55 patients with SPLIS from 
19 articles were identified. Endocrine disorders, 
especially PAI, were found to be the most 
prevalent clinical features.17 While most patients 
affected by adrenal insufficiency present 
with signs of glucocorticoid deficiency, cases 
of mineralocorticoid deficiency and adrenal 
androgen deficiency have also been reported.18,19 
It was reported that disrupted adrenocortical 
zonation and defective expression of 
steroidogenic enzymes may cause adrenal 
insufficiency in Sgpl1 null mice.20 Ceramide, 
sphingosine, and sphingosine 1-phosphate are 
modulators of the steroidogenic pathway.18 

Fig. 5. Schematic representation of the evolutionary conservation of the SGPL1 protein region involved in 
c.1432C>G (p.Gln478Glu) variant among various species.
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While S1P plays a role at multiple levels in the 
steroidogenic pathway to upregulate cortisol 
biosynthesis, ceramide and sphingosine play a 
role in reducing steroidogenesis.21,22 The study 
by Maharaj et al.23 reported that sphingolipid 
accumulation may impair steroidogenesis 
by impairing mitochondrial morphology 
and function. Elevated ceramide levels in the 
mitochondria may lead to inner mitochondrial 
membrane dysfunction.24 In addition, adrenal 
calcification detected in many of the SPLIS 
patients suggests that adrenal insufficiency may 
occur with lipid accumulation in the adrenal 
gland.18 Expression of SGPL1 in the testes and 
thyroid gland explains thyroid dysfunction 
and/or testosterone deficiency in such 
cases.18,20,25 To date, no endocrinopathy other 
than hypocalcemia, adrenal insufficiency and 
subclinic hypothyroidism has been detected in 
our patient. 

S1P signaling is also known to regulate 
bone metabolism. The effect of S1P on 
bone homeostasis is associated with bone 
remodeling by regulating the circulation of 
osteoclast progenitors.26 In the study of Weske 
et al., it was revealed that raising S1P levels in 
adult mice through SGPL1 inhibition markedly 
increased bone formation, mass, and strength, 
and significantly reduced white adipose tissue. 
It was reported that S1P signaling via S1PR2 
strongly stimulates osteoblastogenesis and 
inhibits osteoclastogenesis by simultaneously 
inducing osteoprotegerin.27 In the literature, 
hypocalcemia in SPLIS was reported in one 
case.12 The patient herein was admitted for 
the first time with hypocalcemia at the age of 
2 months old, and his hypocalcemia continued 
despite the treatment of vitamin D and calcium. 
The calcium level was in the normal range, with 
intravenous calcium, calcitriol and vitamin D 
treatment. This case may be important in terms 
of raising awareness about hypocalcemia in 
patients with SPLIS.

It was reported that kidney disorders were the 
most common initial manifestations of SPLIS.17 
Damage to glomerular podocytes is reported 

as one of the causes of kidney pathology in 
SPLIS. Immunofluorescence experiments in 
mice detected that SGPL1 is localized in the 
podocyte, mesangial and endothelial cell 
endoplasmic reticulum of renal glomerular 
cells.12,28 Renal involvement varies from non-
immune fetal hydrops to the absence of renal 
involvement in long-term follow-up. Patients 
usually present with steroid-resistant nephrotic 
syndrome that progresses to end-stage renal 
disease, whose histological findings on renal 
biopsy are focal segmental glomerulosclerosis 
(FSGS) and diffuse mesangial sclerosis.29 This 
form of congenital nephrotic syndrome is called 
nephrotic syndrome type 14.12 Tastemel Ozturk 
et al.30 from Turkey reported six patients with 
homozygous SGPL1 mutations. The median 
age at which kidney symptoms manifested 
in this study was five months, and all of the 
patients developed chronic kidney disease. The 
patient herein had nephrotic range proteinuria, 
hypoalbuminemia and edema accompanied by 
slightly increased serum cholesterol levels.

The complex biological effects of S1P affect the 
nervous system as well as many other systems. 
In patients with SGPL1 deficiency, pathological 
neurological disorders, such as Charcot-Marie-
Tooth neuropathy, neurodevelopmental delay, 
sensorineural hearing loss, microcephaly, 
seizures, cranial nerve deficits, strabismus, 
ptosis, and encephalopathic neurodegenerative 
disease, have been reported.8,9,31 Vertebrate and 
invertebrate models of SGPL1 insufficiency 
have been shown to cause neurotoxicity.32 
Nevertheless, the underlying mechanisms 
responsible for the molecular pathogenesis 
of neurotoxicity remain unresolved. The 
neuroimaging results encompass a spectrum 
of observations, including loss of the corpus 
callosum, progressive cortical atrophy, 
cerebellar hypoplasia, as well as notable 
involvement of the globus pallidus, thalamus, 
and dentate nucleus.29,33 In the literature, 
MRI findings are not specific and may show 
similarities with other toxic, metabolic, 
mitochondrial, infectious, and post infectious 
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disorders. Our patient showed asymmetric 
contrast enhancement in the left orbital apex 
and cortical atrophy with thinning at the optic 
nerve. After steroid treatment, no asymmetric 
contrast enhancement was detected. The cause 
of this finding is not known. To the best of our 
knowledge, thinning of the optic nerve has not 
been reported in SPLIS in the literature. It is 
not known whether this condition is associated 
with SPLIS.

In conclusion, SPLIS patients may 
present with a wide spectrum of findings. 
Hypocalcemia, adrenal insufficiency and 
subclinic hypothyroidism were the earliest 
findings in our case. Early diagnosis can allow 
early identification of other comorbidities of the 
disease. As such cases are reported, it will also 
assist in determining the appropriate genotype-
phenotype correlations in patients suffering 
from SGPL-related pathogenesis. 
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